参考文献 References
[1] S A, SH P, EV L. Epidemiology, Natural History, and Risk Stratification of Crohn's Disease [J]. Gastroenterology clinics of North America, 2017, 46(3): 463-80.
[2] GP R, KA P. Mechanisms of Disease: Inflammatory Bowel Diseases [J]. Mayo Clinic proceedings, 2019, 94(1): 155-65.
[3] SC N, HY S, N H, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies [J]. Lancet (London, England), 2017, 390(10114): 2769-78.
[4] DS S, PA R. The Role of Environmental Factors in the Pathogenesis of Inflammatory Bowel Diseases: A Review [J]. JAMA pediatrics, 2017, 171(10): 999-1005.
[5] JD S, G O, KH P, et al. Augmented increase in tight junction permeability by luminal stimuli in the non-inflamed ileum of Crohn's disease [J]. Gut, 2002, 50(3): 307-13.
[6] DG B, P R, KS R, et al. Deficient iNOS in inflammatory bowel disease intestinal microvascular endothelial cells results in increased leukocyte adhesion [J]. Free radical biology & medicine, 2000, 29(9): 881-8.
[7] ME S, AZ B, J B, et al. Epidemiology of inflammatory bowel disease in a German twin cohort: results of a nationwide study [J]. Inflammatory bowel diseases, 2008, 14(7): 968-76.
[8] B K, A G, RJ X. Genetics and pathogenesis of inflammatory bowel disease [J]. Nature, 2011, 474(7351): 307-17.
[9] MN I, DE E. Immunologic and molecular mechanisms in inflammatory bowel disease [J]. The Surgical clinics of North America, 2007, 87(3): 681-96.
[10] M L, Y L, B W. Biodegradable Polymeric Nanoparticles Loaded with Flavonoids: A Promising Therapy for Inflammatory Bowel Disease [J]. International journal of molecular sciences, 2023, 24(5).
[11] Y S, EV R, C G, et al. The Intestinal Fate of Citrus Flavanones and Their Effects on Gastrointestinal Health [J]. Nutrients, 2019, 11(7).
[12] F L, Y Z, Q P, et al. Apigenin-Mn(II) loaded hyaluronic acid nanoparticles for ulcerative colitis therapy in mice [J]. Frontiers in chemistry, 2022, 10: 969962.
[13] YL L, HF Z, J Y, et al. Biological Activities Underlying the Therapeutic Effect of Quercetin on Inflammatory Bowel Disease [J]. Mediators of inflammation, 2022, 2022: 5665778.
[14] T V, A R-N, F A, et al. Flavonoids in Inflammatory Bowel Disease: A Review [J]. Nutrients, 2016, 8(4): 211.
[15] H S, DP J. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents [J]. Nature reviews Molecular cell biology, 2020, 21(7): 363-83.
[16] Y C, M S, Q Y, et al. Wielding the double-edged sword: Redox drug delivery systems for inflammatory bowel disease [J]. Journal of controlled release : official journal of the Controlled Release Society, 2023, 358: 510-40.
[17] DB Z, M J, SJ S. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release [J]. Physiological reviews, 2014, 94(3): 909-50.
[18] S J-C, K F, R F. Antioxidants as Protection against Reactive Oxidative Stress in Inflammatory Bowel Disease [J]. Metabolites, 2023, 13(4).
[19] T T, Z W, J Z. Pathomechanisms of Oxidative Stress in Inflammatory Bowel Disease and Potential Antioxidant Therapies [J]. Oxidative medicine and cellular longevity, 2017, 2017: 4535194.
[20] H S, H M, N W, et al. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms [J]. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2022, 146: 112442.
[21] D C, M C, ME R-C, et al. The intestinal anti-inflammatory effect of quercitrin is associated with an inhibition in iNOS expression [J]. British journal of pharmacology, 2004, 143(7): 908-18.
[22] HS K, SM O, JK K. Glabridin, a functional compound of liquorice, attenuates colonic inflammation in mice with dextran sulphate sodium-induced colitis [J]. Clinical and experimental immunology, 2008, 151(1): 165-73.
[23] HS O, T C, WJ D V. Green Tea Polyphenols and Sulfasalazine have Parallel Anti-Inflammatory Properties in Colitis Models [J]. Frontiers in immunology, 2013, 4: 132.
[24] M B, S W, W D, et al. Green tea polyphenol epigallocatechin-3-gallate shows therapeutic antioxidative effects in a murine model of colitis [J]. Journal of Crohn's & colitis, 2012, 6(2): 226-35.
[25] Z L, Y J, T Y, et al. A Review on the Immunomodulatory Mechanism of Acupuncture in the Treatment of Inflammatory Bowel Disease [J]. Evidence-based complementary and alternative medicine : eCAM, 2022, 2022: 8528938.
[26] 李禹墨. 氧化苦参碱通过调控SIRT1介导的细胞焦亡改善溃疡性结肠炎的作用机制研究 [D]; 长春中医药大学, 2022.
[27] 张露丹. 二氢杨梅素调节巨噬细胞极化改善小鼠葡聚糖硫酸钠结肠炎 [D]; 兰州大学, 2022.
[28] 王书侠, 张家明, 姚孝明, et al. 木犀草素对活化的RAW264.7巨噬细胞分泌炎症因子的影响 [J]. 医学研究生学报, 2017, 30(01): 31-5.
[29] L C, L F, ZH Z, et al. The anti-inflammation effect of baicalin on experimental colitis through inhibiting TLR4/NF-κB pathway activation [J]. International immunopharmacology, 2014, 23(1): 294-303.
[30] M C, D C, S S, et al. In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-kappaB pathway [J]. European journal of immunology, 2005, 35(2): 584-92.
[31] 余曼荣, 贺建华, 肖定福. 辅助性T细胞17/调节性T细胞平衡调控炎症性肠病及其在动物生产上的应用 [J]. 动物营养学报, 2021, 33(04): 1925-35.
[32] JD L. Promises and paradoxes of regulatory T cells in inflammatory bowel disease [J]. World journal of gastroenterology, 2015, 21(40): 11236-45.
[33] YJ L, B T, FC W, et al. Parthenolide ameliorates colon inflammation through regulating Treg/Th17 balance in a gut microbiota-dependent manner [J]. Theranostics, 2020, 10(12): 5225-41.
[34] L W, M G, G K, et al. The Potential Role of Phytonutrients Flavonoids Influencing Gut Microbiota in the Prophylaxis and Treatment of Inflammatory Bowel Disease [J]. Frontiers in nutrition, 2021, 8: 798038.
[35] JC E, A G-S, FA T-B. The gut microbiota: A key factor in the therapeutic effects of (poly)phenols [J]. Biochemical pharmacology, 2017, 139: 82-93.
[36] 吴甜甜. 姜黄素干预TLR/MyD88信号调节复发型结肠炎小鼠Breg细胞水平的作用机制研究 [D]; 江西中医药大学, 2021.
[37] S D, M Z, K W, et al. Dihydromyricetin improves DSS-induced colitis in mice via modulation of fecal-bacteria-related bile acid metabolism [J]. Pharmacological research, 2021, 171: 105767.
[38] J H, L C, B X, et al. Different Flavonoids Can Shape Unique Gut Microbiota Profile In Vitro [J]. Journal of food science, 2016, 81(9): H2273-9.