期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Journal of Modern Biotechnology Research. 2024; 2: (1) ; 1-6 ; DOI: 10.12208/j.jmbr.20240001.

Research advances in animal models of hyperbilirubinemia
高胆红素血症动物模型构建的研究进展

作者: 杨汐静1 *, 刘道龙2, 王洋3, 杨阳1

1四川大学华西医院动物实验中心 四川成都

2黑龙江珍宝岛药业股份有限公司 黑龙江哈尔滨

3新希望六和股份有限公司 四川成都

*通讯作者: 杨汐静,单位:四川大学华西医院动物实验中心 四川成都;

发布时间: 2024-01-12 总浏览量: 513

摘要

目前已经有很多种方法和动物种类可以构建高胆红素血症模型,如通过腹腔注射或者静脉注射胆红素、利用基因基因编辑技术构建基因缺陷动物模型、利用化学药物注射诱导、利用延髓直接注射胆红素的方法等。为了更深层探究高胆红素血症的发病机制以及改善和优化其治疗方法,本文收集并总结了高胆红素血症各类动物模型的构建方法以及优缺点,为高胆红素血症模型的建立提供了参考,对后续临床研究高胆红素症机制及治疗具有重要意义。

关键词: 高胆红素血症;动物实验;疾病模型;胆红素;新生儿

Abstract

There are many methods and animal species to establish animal models of hyPerbilirubinemia, such as abdominal or intravenous injection of bilirubin, the use of gene defective animal models, the use of chemical injection induction, and the direct injection of bilirubin into the medulla oblongata and so on. In order to further explore the pathogenesis of hyperbilirubinemia and improve and optimize its treatment methods, This paper collected and summarized the construction methods, advantages and disadvantages of various animal models of hyperbilirubinemia, providing a reference for the establishment of hyperbilirubinemia models, which is of great significance for subsequent clinical research on the mechanism and treatment of hyperbilirubinemia.

Key words: Hyperbilirubinemia; Animal experiment; disease model; bilirubin; Neonatal

参考文献 References

[1] Santosh Man Shrestha, Masayoshi Kage, Byung Boong Lee. Hepatic vena cava syndrome: New concept of pathogenesis Hepatol Res. 2017 Jun; 47(7): 603-615. 

[2] Irwin M. Arians. Liver biology and pathobiology Hepatology (Sixth Edition). 2020 Feb; 43(2 Suppl 1): S235-8. 

[3] Wolkoff A W, Berk P D. Bilirubin Metabolism and Jaundice[M]. Wiley-Blackwell, 2015. 

[4] Kassahun Woldeteklehaymanot et al. Glucose-6-phosphate dehydrogenase deficiency among neonates with jaundice in Africa; systematic review and meta-analysis[J]. Heliyon, 2023, 9(7): e18437-e18437. 

[5] Riskin Arieh et al. The Genetics of Glucose-6-Phosphate-Dehydrogenase (G6PD) and Uridine Diphosphate Glucuronosyl Transferase 1A1 (UGT1A1) Promoter Gene Polymorphism in Relation to Quantitative Biochemical G6PD Activity Measurement and Neonatal Hyperbiliru- binemia. [J]. Children (Basel, Switzerland), 2023, 10(7)

[6] Binita M Kamath, Philip Stein, Roderick H J Houwen, Henkjan J Verkade Potential of ileal bile acid transporter inhibition as a therapeutic target in Alagille syndrome and progressive familial intrahepatic cholestasis Liver Int. 2020 Aug; 40(8): 1812-1822. 

[7] Ye H, Xing Y, Zhang L, et al. Bilirubin-induced neurotoxic and ototoxic effects in rat cochlear and vestibular organotypic cultures [J]. Neurotoxicology, 2019, 71(9): 75-86. 

[8] Kair LR, Phillipi CA. Simplifying Hyperbilirubinemia Risk Estimation[J]. Pediatrics, 2021, 147(5): 45-46. 

[9] Adin CA. Bilirubin as a Therapeutic Molecule: Challenges and Opportunities[J]. Antioxidants(Basel), 2021, 10(10): 3-4. 

[10] 邵肖梅, 叶鸿瑁, 丘小灿. 实用新生儿学. 第五版 [M]. 2019(4): 451. 

[11] 舒春兰, 邓爱果, 晏菲琴等. 足月新生儿高胆红素血症影响因素的流行病学调查 [J]. 江西医药, 2022, 57(10): 1681-1683. 

[12] 王卫平, 孙锟, 常立文. 儿科学第 9 版, 北京: 人民卫生出版[M]. 2020. 111. 

[13] Itova Tatyana D.; Georgieva Victoria A. Journal | [J] Journal of Biomedical and Clinical Research. Volume 15, Issue 2. 2022. PP 158-164

[14] 苏瑞, 闫莉华, 代庆海等. 高胆红血素症动物模型的研究[J]. 中国城乡企业卫生, 2022, 37(06): 1-4. 

[15] Shihan Sun, Shuyuan Yu, Hong Yu, Gang Yao, et al. The pyroptosis mechanism of ototoxicity caused by unconjugated bilirubin in neonatal hyperbilirubinemia[J]. Biomed Pharmacother. 2023 Sep; 165: 115162. 

[16] Vodret Simone, Bortolussi Giulia, Iaconcig Alessandra et al. Attenuation of neuro-inflammation improves survival and neurodegeneration in a mouse model of severe neonatal hyperbilirubinemia. [J]. Brain Behav Immun, 2018, 70: 166-178. 

[17] 赵振鹿, 丛涛, 杨驹等. 新生豚鼠急性高胆红素血症模型的听性脑干反应特征[J]. 中国听力语言康复科学杂志, 2017, 15(04): 285-290. 

[18] 王宝田. 新生猕猴溶血性高胆红素血症模型建立的实验研究[D]. 安徽医科大学, 2016. 

[19] Haq Nawaz, Iqra Naseem, Tanzila Rehman, et al. Optimization of zinc oxide nanoparticle-catalyzed in vitro bilirubin photolysis and in vivo treatment of hyperbilirubinemia. Nanomedicine (Lond). 2021 Jul; 16(16): 1377-1390. 

[20] Ma Xinrun, Shang Xuyang, Qin Xuan et al. Characterization of organic anion transporting polypeptide 1b2 knockout rats generated by CRISPR/Cas9: a novel model for drug transport and hyperbilirubinemia disease. [J]. Acta Pharm Sin B, 2020, 10: 850-860. 

[21] 贾晓君. 高胆红素血症及胆红素脑病新生大鼠模型的建立及评价[D]. 山西医科大学, 2017. 

[22] Jaylyn Waddell, Min He, Ningfeng Tang et al. Christian Rizzuto, A Gunn rat model of preterm hyperbilirubinemia. [J]. Pediatr Res. 2020 Feb; 87(3): 480-484. 

[23] Influence of chronic hyperoxia on the developmental time course of the hypoxic ventilatory response relative to other traits in rats. [J]. Respir Physiol Neurobiol. 2020 Sep; 280: 103483. 

[24] Shoko Miura, Keiko Tsuchie, Michiyo Fukushima, Ryosuke, Arauchi, et al. Normalizing hyperactivity of the Gunn rat with bilirubin-induced neurological disorders via ketanserin. [J]. Pediatr Res. 2022 Feb; 91(3): 556-564. 

[25] Jia-Heng Hu, Ping Fan, Li-Rong Zhang, Chun-Yan Chen, et al. Neuroglobin expression and function in the temporal cortex of bilirubin encephalopathy rats. [J]. Anat Rec (Hoboken). 2022 Feb; 305(2): 254-264. 

[26] 刘龙宾, 唐丽霞, 林新祝等. Nrf2通路活化在胆红素脑病新生大鼠海马神经元损伤中的作用 [ J]. 四川大学学报(医学版), 2021, 52(6):  960-965

[27] Vodret Simone, Bortolussi Giulia, Iaconcig Alessandra et al. Attenuation of neuro-inflammation improves survival and neurodegeneration in a mouse model of severe neonatal hyperbilirubinemia. [J]. Brain Behav Immun, 2018, 70: 166-178

[28] 郭颖慧, 陈瑞, 曹天佑等. 丹参炭纳米类成分的发现及其对高胆红素血症致小鼠肝损伤的保护作用[J]. 中医药导报, 2023, 29(01): 6-11. 

[29] 李涛. 全基因组 DNA 甲基化修饰在高胆红素血症致小鼠大脑损伤中的作用初探[D]. 兰州大学, 2021. 

[30] Ercan Ilkcan, Cilaker Micili Serap, Soy Sila et al. Bilirubin induces microglial NLRP3 inflammasome activation in vitro and in vivo. [J]. Mol Cell Neurosci, 2023, 125: 103850. 

[31] Liao Pingping, Wang Xiaoyu, Dong He et al. Hyperbilirubinemia Aggravates Renal Ischemia Reperfusion Injury by Exacerbating PINK1- PARKIN-mediated Mitophagy. [J]. Shock, 2023, undefined: undefined. 

[32] Simone Vodret, Giulia Bortolussi , Andrés F Muro et al. Attenuation of neuro-inflammation improves survival and neurodegeneration in a mouse model of severe neonatal hyperbilirubinemia. [J]. Brain Behav Immun, 2018, 4; 70: 166-178. 

[33] Yi Wang, Chenjie Zhou, Yu Fu et al. Establishment of acute liver failure model in Tibetan miniature pig and verified by dual plasma molecular adsorption system[J]. Int J Artif Organs. 2023 Mar; 46(3): 141-152. 

[34] 苏瑞, 闫莉华, 代庆海等. 高胆红血素症动物模型的研究[J]. 中国城乡企业卫生2022, 37(06): 1-4

[35] 张奕, 吴小海, 林成光等. 茵陈水提物对新生豚鼠高胆红素血症耳蜗核抗炎保护作用[J]. 中国医学创新, 2019, 16(09): 11-14. 

[36] 赵振鹿, 丛涛, 杨驹等. 新生豚鼠急性高胆红素血症模型的听性脑干反应特征. [J]. 中国听力语言康复科学杂志, 2017, 15(04): 285-290. 

[37] Nawaz Haq, Shad Muhammad Aslam, Iqbal Mohammad Saeed, Optimization of phenylhydrazine induced hyperbilirubinemia in experimental rabbit. [J]. Exp Anim, 2016, 65: 363-372

[38] Haq N, Tanzila R, Momna A, et al. Optimization of; Phyllanthus emblica; L. leaf extract-assisted clearan ce of hyperbilirubinemia in White New Zealand albino rabbits. [J]. All Life, 2022, 15(1). 

[39] Haq Nawaz, Iqra Naseem, Tanzila Rehman et al. Optimization of zinc oxide nanoparticle-catalyzed in vitro bilirubin photolysis and in vivo treatment of hyperbilirubinemia[J]. Nanomedicine (Lond). 2021 Jul; 16(16): 1377-1390. 

[40] Pengpeng Yue, Biao Chen, Xiaoyan Lv et al. Biocompatible Composite Microspheres of Chitin/Ordered Mesoporous Carbon CMK3 for Bilirubin Adsorption and Cell Microcarrier Culture. [J]. Macromol Biosci. 2022 Apr; 22(4): e2100412. 

[41] 王宝田, 唐久来, 杨李, 等. 新生猕猴溶血性高胆红素血症模型的建立. [J]. 中华实用儿科临床杂志, 2016, 31(15): 1192-1195. 

[42] Hitoshi Okada, Susumu Itoh, Kohichiroh Nii, Masashiro Sugino, et al. Bilirubin photoisomers in rhesus monkey serum. [J]. Photochem Photobiol B. 2018 Aug; 185: 50-54. 

引用本文

杨汐静, 刘道龙, 王洋, 杨阳, 高胆红素血症动物模型构建的研究进展[J]. 现代生物技术研究, 2024; 2: (1) : 1-6.