期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Journal of Modern Biotechnology Research. 2024; 2: (1) ; 36-42 ; DOI: 10.12208/j.jmbr.20240007.

Research status and trends of mRNA tumor vaccines
mRNA肿瘤疫苗的研究现状及其研究趋势

作者: 朱曼芳, 张越洋, 段醒妹 *

电子科技大学医学院四川省医学科学院·四川省人民医院个体化药物治疗四川省重点实验室 四川成都

*通讯作者: 段醒妹,单位:电子科技大学医学院四川省医学科学院·四川省人民医院个体化药物治疗四川省重点实验室 四川成都;

发布时间: 2024-07-11 总浏览量: 178

摘要

免疫治疗已经确立为肿瘤治疗的有力手段之一,其中mRNA肿瘤疫苗尤为引人注目,展现出了巨大的应用潜力。mRNA肿瘤疫苗利用mRNA表达相关抗原激活机体的抗肿瘤免疫应答,从而实现对肿瘤的有效杀灭。随着体外转录技术和递送系统的发展,多种mRNA肿瘤疫苗在临床试验中已经展现出了良好的安全性和显著的治疗效果。结合现有的治疗方式,mRNA肿瘤疫苗有望为肿瘤提供更为高效的治疗策略。本综述旨在阐述mRNA肿瘤疫苗的作用机制,聚焦于其递送系统的研究,并探讨mRNA肿瘤疫苗的临床价值。期望为深入理解mRNA肿瘤疫苗的研发提供参考。

关键词: mRNA肿瘤疫苗;肿瘤免疫治疗

Abstract

Immunotherapy has been established as one of the powerful means of tumor treatment, and mRNA tumor vaccine is particularly eye-catching, showing great application potential. mRNA tumor vaccine uses mRNA expression related antigen to activate the anti-tumor immune response, so as to achieve effective cleaning of tumor cells. With the development of in vitro transcription technology and delivery systems, a variety of mRNA tumor vaccines have shown high safety and significant therapeutic effects in clinical trials. In combination with existing therapies, mRNA tumor vaccines are expected to provide a more effective treatment strateg. The purpose of this review is to elucidate the mechanism of mRNA tumor vaccines, to focuse on the studies of delivery system, and to explore the clinical value of mRNA tumor vaccines. It is expected to provide a reference for further understanding of the development of mRNA tumor vaccines.

Key words: mRNA tumor vaccine; tumor immunotherapy

参考文献 References

[1] JASSIM A, RAHRMANN E P, SIMONS B D, et al. Cancers make their own luck: theories of cancer origins [J]. Nat Rev Cancer, 2023, 23(10): 710-24.

[2] WALDMAN A D, FRITZ J M, LENARDO M J. A guide to cancer immunotherapy: from T cell basic science to clinical practice [J]. Nat Rev Immunol, 2020, 20(11): 651-68.

[3] MALONE R W, FELGNER P L, VERMA I M. Cationic liposome-mediated RNA transfection [J]. Proc Natl Acad Sci U S A, 1989, 86(16): 6077-81.

[4] KARIKO K, BUCKSTEIN M, NI H, et al. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA [J]. Immunity, 2005, 23(2): 165-75.

[5] WEBB C, IP S, BATHULA N V, et al. Current Status and Future Perspectives on MRNA Drug Manufacturing [J]. Mol Pharm, 2022, 19(4): 1047-58.

[6] HODGSON J. The pandemic pipeline [J]. Nat Biotechnol, 2020, 38(5): 523-32.

[7] SAHIN U, DERHOVANESSIAN E, MILLER M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer [J]. Nature, 2017, 547(7662): 222-6.

[8] JAHANAFROOZ Z, BARADARAN B, MOSAFER J, et al. Comparison of DNA and mRNA vaccines against cancer [J]. Drug Discov Today, 2020, 25(3): 552-60.

[9] VAIDYANATHAN S, AZIZIAN K T, HAQUE A, et al. Uridine Depletion and Chemical Modification Increase Cas9 mRNA Activity and Reduce Immunogenicity without HPLC Purification [J]. Mol Ther Nucleic Acids, 2018, 12: 530-42.

[10] WANG Y, ZHANG L, XU Z, et al. mRNA Vaccine with Antigen-Specific Checkpoint Blockade Induces an Enhanced Immune Response against Established Melanoma [J]. Mol Ther, 2018, 26(2): 420-34.

[11] CORR M, TIGHE H. Plasmid DNA vaccination: mechanism of antigen presentation [J]. Springer Semin Immunopathol, 1997, 19(2): 139-45.

[12] MAASS G, SCHMIDT W, BERGER M, et al. Priming of tumor-specific T cells in the draining lymph nodes after immunization with interleukin 2-secreting tumor cells: three consecutive stages may be required for successful tumor vaccination [J]. Proc Natl Acad Sci U S A, 1995, 92(12): 5540-4.

[13] NAIR S, BUITING A M, ROUSE R J, et al. Role of macrophages and dendritic cells in primary cytotoxic T lymphocyte responses [J]. Int Immunol, 1995, 7(4): 679-88.

[14] HERKEL J, JAGEMANN B, WIEGARD C, et al. MHC class II-expressing hepatocytes function as antigen-presenting cells and activate specific CD4 T lymphocyutes [J]. Hepatology, 2003, 37(5): 1079-85.

[15] TUBO N J, JENKINS M K. CD4+ T Cells: guardians of the phagosome [J]. Clin Microbiol Rev, 2014, 27(2): 200-13.

[16] STUBER E, STROBER W. The T cell-B cell interaction via OX40-OX40L is necessary for the T cell-dependent humoral immune response [J]. J Exp Med, 1996, 183(3): 979-89.

[17] GRAYDON E K, CONNER T L, DUNHAM K, et al. Natural killer cells and BNT162b2 mRNA vaccine reactogenicity and durability [J]. Front Immunol, 2023, 14: 1225025.

[18] KNUDSON C J, ALVES-PEIXOTO P, MURAMATSU H, et al. Lipid-nanoparticle-encapsulated mRNA vaccines induce protective memory CD8 T cells against a lethal viral infection [J]. Mol Ther, 2021, 29(9): 2769-81.

[19] GOEL R R, PAINTER M M, APOSTOLIDIS S A, et al. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern [J]. Science, 2021, 374(6572): abm0829.

[20] POLLARD C, REJMAN J, DE HAES W, et al. Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines [J]. Mol Ther, 2013, 21(1): 251-9.

[21] NITIKA, WEI J, HUI A M. The Development of mRNA Vaccines for Infectious Diseases: Recent Updates [J]. Infect Drug Resist, 2021, 14: 5271-85.

[22] ZENG C, ZHANG C, WALKER P G, et al. Formulation and Delivery Technologies for mRNA Vaccines [J]. Curr Top Microbiol Immunol, 2022, 440: 71-110.

[23] FUGLSANG A. Codon optimizer: a freeware tool for codon optimization [J]. Protein Expr Purif, 2003, 31(2): 247-9.

[24] LEPPEK K, BYEON G W, KLADWANG W, et al. Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics [J]. Nat Commun, 2022, 13(1): 1536.

[25] SAMPLE P J, WANG B, REID D W, et al. Human 5' UTR design and variant effect prediction from a massively parallel translation assay [J]. Nat Biotechnol, 2019, 37(7): 803-9.

[26] EDWARDS D K, JASNY E, YOON H, et al. Adjuvant effects of a sequence-engineered mRNA vaccine: translational profiling demonstrates similar human and murine innate response [J]. J Transl Med, 2017, 15(1): 1.

[27] CARRALOT J P, PROBST J, HOERR I, et al. Polarization of immunity induced by direct injection of naked sequence-stabilized mRNA vaccines [J]. Cell Mol Life Sci, 2004, 61(18): 2418-24.

[28] BADEN L R, EL SAHLY H M, ESSINK B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine [J]. N Engl J Med, 2021, 384(5): 403-16.

[29] ROJAS L A, SETHNA Z, SOARES K C, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer [J]. Nature, 2023, 618(7963): 144-50.

[30] NDEUPEN S, QIN Z, JACOBSEN S, et al. The mRNA-LNP platform's lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory [J]. bioRxiv, 2021.

[31] JACKSON L A, ANDERSON E J, ROUPHAEL N G, et al. An mRNA Vaccine against SARS-CoV-2 - Preliminary Report [J]. N Engl J Med, 2020, 383(20): 1920-31.

[32] RUI Y, WILSON D R, TZENG S Y, et al. High-throughput and high-content bioassay enables tuning of polyester nanoparticles for cellular uptake, endosomal escape, and systemic in vivo delivery of mRNA [J]. Sci Adv, 2022, 8(1): eabk2855.

[33] TU Z, YU Q, WU R, et al. High-Throughput Screening of Polymer Library for mRNA Tumor Vaccine Carriers with Innate Adjuvant Properties [J]. Chemistry of Materials, 2024.

[34] RODRIGUES A F, REBELO C, SIMOES S, et al. A Polymeric Nanoparticle Formulation for Targeted mRNA Delivery to Fibroblasts [J]. Adv Sci (Weinh), 2023, 10(5): e2205475.

[35] MEYER R A, HUSSMANN G P, PETERSON N C, et al. A scalable and robust cationic lipid/polymer hybrid nanoparticle platform for mRNA delivery [J]. Int J Pharm, 2022, 611: 121314.

[36] JARZEBSKA N T, MELLETT M, FREI J, et al. Protamine-Based Strategies for RNA Transfection [J]. Pharmaceutics, 2021, 13(6).

[37] SCHEEL B, AULWURM S, PROBST J, et al. Therapeutic anti-tumor immunity triggered by injections of immunostimulating single-stranded RNA [J]. Eur J Immunol, 2006, 36(10): 2807-16.

[38] UDHAYAKUMAR V K, DE BEUCKELAER A, MCCAFFREY J, et al. Arginine-Rich Peptide-Based mRNA Nanocomplexes Efficiently Instigate Cytotoxic T Cell Immunity Dependent on the Amphipathic Organization of the Peptide [J]. Adv Healthc Mater, 2017, 6(13).

[39] ZHU P, LI S Y, DING J, et al. Combination immunotherapy of glioblastoma with dendritic cell cancer vaccines, anti-PD-1 and poly I:C [J]. J Pharm Anal, 2023, 13(6): 616-24.

[40] SAHIN U, OEHM P, DERHOVANESSIAN E, et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma [J]. Nature, 2020, 585(7823): 107-12.

[41] JONES R P, LEE L Y W, CORRIE P G, et al. Individualized cancer vaccines versus surveillance after adjuvant chemotherapy for surgically resected high-risk stage 2 and stage 3 colorectal cancer: protocol for a randomized trial [J]. Br J Surg, 2023, 110(12): 1883-4.

[42] PAPACHRISTOFILOU A, HIPP M M, KLINKHARDT U, et al. Phase Ib evaluation of a self-adjuvanted protamine formulated mRNA-based active cancer immunotherapy, BI1361849 (CV9202), combined with local radiation treatment in patients with stage IV non-small cell lung cancer [J]. J Immunother Cancer, 2019, 7(1): 38.

[43] WEBER J S, CARLINO M S, KHATTAK A, et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study [J]. Lancet, 2024, 403(10427): 632-44.

引用本文

朱曼芳, 张越洋, 段醒妹, mRNA肿瘤疫苗的研究现状及其研究趋势[J]. 现代生物技术研究, 2024; 2: (1) : 36-42.