参考文献 References
[1] JASSIM A, RAHRMANN E P, SIMONS B D, et al. Cancers make their own luck: theories of cancer origins [J]. Nat Rev Cancer, 2023, 23(10): 710-24.
[2] WALDMAN A D, FRITZ J M, LENARDO M J. A guide to cancer immunotherapy: from T cell basic science to clinical practice [J]. Nat Rev Immunol, 2020, 20(11): 651-68.
[3] MALONE R W, FELGNER P L, VERMA I M. Cationic liposome-mediated RNA transfection [J]. Proc Natl Acad Sci U S A, 1989, 86(16): 6077-81.
[4] KARIKO K, BUCKSTEIN M, NI H, et al. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA [J]. Immunity, 2005, 23(2): 165-75.
[5] WEBB C, IP S, BATHULA N V, et al. Current Status and Future Perspectives on MRNA Drug Manufacturing [J]. Mol Pharm, 2022, 19(4): 1047-58.
[6] HODGSON J. The pandemic pipeline [J]. Nat Biotechnol, 2020, 38(5): 523-32.
[7] SAHIN U, DERHOVANESSIAN E, MILLER M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer [J]. Nature, 2017, 547(7662): 222-6.
[8] JAHANAFROOZ Z, BARADARAN B, MOSAFER J, et al. Comparison of DNA and mRNA vaccines against cancer [J]. Drug Discov Today, 2020, 25(3): 552-60.
[9] VAIDYANATHAN S, AZIZIAN K T, HAQUE A, et al. Uridine Depletion and Chemical Modification Increase Cas9 mRNA Activity and Reduce Immunogenicity without HPLC Purification [J]. Mol Ther Nucleic Acids, 2018, 12: 530-42.
[10] WANG Y, ZHANG L, XU Z, et al. mRNA Vaccine with Antigen-Specific Checkpoint Blockade Induces an Enhanced Immune Response against Established Melanoma [J]. Mol Ther, 2018, 26(2): 420-34.
[11] CORR M, TIGHE H. Plasmid DNA vaccination: mechanism of antigen presentation [J]. Springer Semin Immunopathol, 1997, 19(2): 139-45.
[12] MAASS G, SCHMIDT W, BERGER M, et al. Priming of tumor-specific T cells in the draining lymph nodes after immunization with interleukin 2-secreting tumor cells: three consecutive stages may be required for successful tumor vaccination [J]. Proc Natl Acad Sci U S A, 1995, 92(12): 5540-4.
[13] NAIR S, BUITING A M, ROUSE R J, et al. Role of macrophages and dendritic cells in primary cytotoxic T lymphocyte responses [J]. Int Immunol, 1995, 7(4): 679-88.
[14] HERKEL J, JAGEMANN B, WIEGARD C, et al. MHC class II-expressing hepatocytes function as antigen-presenting cells and activate specific CD4 T lymphocyutes [J]. Hepatology, 2003, 37(5): 1079-85.
[15] TUBO N J, JENKINS M K. CD4+ T Cells: guardians of the phagosome [J]. Clin Microbiol Rev, 2014, 27(2): 200-13.
[16] STUBER E, STROBER W. The T cell-B cell interaction via OX40-OX40L is necessary for the T cell-dependent humoral immune response [J]. J Exp Med, 1996, 183(3): 979-89.
[17] GRAYDON E K, CONNER T L, DUNHAM K, et al. Natural killer cells and BNT162b2 mRNA vaccine reactogenicity and durability [J]. Front Immunol, 2023, 14: 1225025.
[18] KNUDSON C J, ALVES-PEIXOTO P, MURAMATSU H, et al. Lipid-nanoparticle-encapsulated mRNA vaccines induce protective memory CD8 T cells against a lethal viral infection [J]. Mol Ther, 2021, 29(9): 2769-81.
[19] GOEL R R, PAINTER M M, APOSTOLIDIS S A, et al. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern [J]. Science, 2021, 374(6572): abm0829.
[20] POLLARD C, REJMAN J, DE HAES W, et al. Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines [J]. Mol Ther, 2013, 21(1): 251-9.
[21] NITIKA, WEI J, HUI A M. The Development of mRNA Vaccines for Infectious Diseases: Recent Updates [J]. Infect Drug Resist, 2021, 14: 5271-85.
[22] ZENG C, ZHANG C, WALKER P G, et al. Formulation and Delivery Technologies for mRNA Vaccines [J]. Curr Top Microbiol Immunol, 2022, 440: 71-110.
[23] FUGLSANG A. Codon optimizer: a freeware tool for codon optimization [J]. Protein Expr Purif, 2003, 31(2): 247-9.
[24] LEPPEK K, BYEON G W, KLADWANG W, et al. Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics [J]. Nat Commun, 2022, 13(1): 1536.
[25] SAMPLE P J, WANG B, REID D W, et al. Human 5' UTR design and variant effect prediction from a massively parallel translation assay [J]. Nat Biotechnol, 2019, 37(7): 803-9.
[26] EDWARDS D K, JASNY E, YOON H, et al. Adjuvant effects of a sequence-engineered mRNA vaccine: translational profiling demonstrates similar human and murine innate response [J]. J Transl Med, 2017, 15(1): 1.
[27] CARRALOT J P, PROBST J, HOERR I, et al. Polarization of immunity induced by direct injection of naked sequence-stabilized mRNA vaccines [J]. Cell Mol Life Sci, 2004, 61(18): 2418-24.
[28] BADEN L R, EL SAHLY H M, ESSINK B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine [J]. N Engl J Med, 2021, 384(5): 403-16.
[29] ROJAS L A, SETHNA Z, SOARES K C, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer [J]. Nature, 2023, 618(7963): 144-50.
[30] NDEUPEN S, QIN Z, JACOBSEN S, et al. The mRNA-LNP platform's lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory [J]. bioRxiv, 2021.
[31] JACKSON L A, ANDERSON E J, ROUPHAEL N G, et al. An mRNA Vaccine against SARS-CoV-2 - Preliminary Report [J]. N Engl J Med, 2020, 383(20): 1920-31.
[32] RUI Y, WILSON D R, TZENG S Y, et al. High-throughput and high-content bioassay enables tuning of polyester nanoparticles for cellular uptake, endosomal escape, and systemic in vivo delivery of mRNA [J]. Sci Adv, 2022, 8(1): eabk2855.
[33] TU Z, YU Q, WU R, et al. High-Throughput Screening of Polymer Library for mRNA Tumor Vaccine Carriers with Innate Adjuvant Properties [J]. Chemistry of Materials, 2024.
[34] RODRIGUES A F, REBELO C, SIMOES S, et al. A Polymeric Nanoparticle Formulation for Targeted mRNA Delivery to Fibroblasts [J]. Adv Sci (Weinh), 2023, 10(5): e2205475.
[35] MEYER R A, HUSSMANN G P, PETERSON N C, et al. A scalable and robust cationic lipid/polymer hybrid nanoparticle platform for mRNA delivery [J]. Int J Pharm, 2022, 611: 121314.
[36] JARZEBSKA N T, MELLETT M, FREI J, et al. Protamine-Based Strategies for RNA Transfection [J]. Pharmaceutics, 2021, 13(6).
[37] SCHEEL B, AULWURM S, PROBST J, et al. Therapeutic anti-tumor immunity triggered by injections of immunostimulating single-stranded RNA [J]. Eur J Immunol, 2006, 36(10): 2807-16.
[38] UDHAYAKUMAR V K, DE BEUCKELAER A, MCCAFFREY J, et al. Arginine-Rich Peptide-Based mRNA Nanocomplexes Efficiently Instigate Cytotoxic T Cell Immunity Dependent on the Amphipathic Organization of the Peptide [J]. Adv Healthc Mater, 2017, 6(13).
[39] ZHU P, LI S Y, DING J, et al. Combination immunotherapy of glioblastoma with dendritic cell cancer vaccines, anti-PD-1 and poly I:C [J]. J Pharm Anal, 2023, 13(6): 616-24.
[40] SAHIN U, OEHM P, DERHOVANESSIAN E, et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma [J]. Nature, 2020, 585(7823): 107-12.
[41] JONES R P, LEE L Y W, CORRIE P G, et al. Individualized cancer vaccines versus surveillance after adjuvant chemotherapy for surgically resected high-risk stage 2 and stage 3 colorectal cancer: protocol for a randomized trial [J]. Br J Surg, 2023, 110(12): 1883-4.
[42] PAPACHRISTOFILOU A, HIPP M M, KLINKHARDT U, et al. Phase Ib evaluation of a self-adjuvanted protamine formulated mRNA-based active cancer immunotherapy, BI1361849 (CV9202), combined with local radiation treatment in patients with stage IV non-small cell lung cancer [J]. J Immunother Cancer, 2019, 7(1): 38.
[43] WEBER J S, CARLINO M S, KHATTAK A, et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study [J]. Lancet, 2024, 403(10427): 632-44.