参考文献 References
[1] LANE C A, HARDY J, SCHOTT J M. Alzheimer's disease [J]. European journal of neurology, 2018, 25(1): 59-70.
[2] CATALDI R, SACHDEV P S, CHOWDHARY N, et al. A WHO blueprint for action to reshape dementia research [J]. Nature aging, 2023, 3(5): 469-71.
[3] ABDELNOUR C, AGOSTA F, BOZZALI M, et al. Perspectives and challenges in patient stratification in Alzheimer's disease [J]. Alzheimer's research & therapy, 2022, 14(1): 112.
[4] CUMMINGS J. New approaches to symptomatic treatments for Alzheimer's disease [J]. Molecular neurodegeneration, 2021, 16(1): 2.
[5] MATTSON M P, LONGO V D, HARVIE M. Impact of intermittent fasting on health and disease processes [J]. Ageing research reviews, 2017, 39: 46-58.
[6] DYŃKA D, KOWALCZE K, PAZIEWSKA A. The Role of Ketogenic Diet in the Treatment of Neurological Diseases [J]. Nutrients, 2022, 14(23).
[7] SOLCH R J, AIGBOGUN J O, VOYIADJIS A G, et al. Mediterranean diet adherence, gut microbiota, and Alzheimer's or Parkinson's disease risk: A systematic review [J]. Journal of the neurological sciences, 2022, 434: 120166.
[8] VAN DEN BRINK A C, BROUWER-BROLSMA E M, BERENDSEN A A M, et al. The Mediterranean, Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) Diets Are Associated with Less Cognitive Decline and a Lower Risk of Alzheimer's Disease-A Review [J]. Advances in nutrition (Bethesda, Md), 2019, 10(6): 1040-65.
[9] LIU X, MORRIS M C, DHANA K, et al. Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) study: Rationale, design and baseline characteristics of a randomized control trial of the MIND diet on cognitive decline [J]. Contemporary clinical trials, 2021, 102: 106270.
[10] VAVŘIČKA J, BROŽ P, FOLLPRECHT D, et al. Modern Perspective of Lactate Metabolism [J]. Physiological research, 2024, 73(4): 499-514.
[11] WU A, LEE D, XIONG W C. Lactate Metabolism, Signaling, and Function in Brain Development, Synaptic Plasticity, Angiogenesis, and Neurodegenerative Diseases [J]. International journal of molecular sciences, 2023, 24(17).
[12] WANG M Y, ZHOU Y, LI W L, et al. Friend or foe: Lactate in neurodegenerative diseases [J]. Ageing research reviews, 2024, 101: 102452.
[13] WEI L, YANG X, WANG J, et al. H3K18 lactylation of senescent microglia potentiates brain aging and Alzheimer's disease through the NFκB signaling pathway [J]. Journal of neuroinflammation, 2023, 20(1): 208.
[14] SHIRBANDI K, RIKHTEGAR R, KHALAFI M, et al. Functional Magnetic Resonance Spectroscopy of Lactate in Alzheimer Disease: A Comprehensive Review of Alzheimer Disease Pathology and the Role of Lactate [J]. Topics in magnetic resonance imaging : TMRI, 2023, 32(2): 15-26.
[15] SCHELTENS P, DE STROOPER B, KIVIPELTO M, et al. Alzheimer's disease [J]. Lancet (London, England), 2021, 397(10284): 1577-90.
[16] FALGàS N, WALSH C M, NEYLAN T C, et al. Deepen into sleep and wake patterns across Alzheimer's disease phenotypes [J]. Alzheimer's & dementia : the journal of the Alzheimer's Association, 2021, 17(8): 1403-6.
[17] GRAFF-RADFORD J, YONG K X X, APOSTOLOVA L G, et al. New insights into atypical Alzheimer's disease in the era of biomarkers [J]. The Lancet Neurology, 2021, 20(3): 222-34.
[18] CHI S, YU J T, TAN M S, et al. Depression in Alzheimer's disease: epidemiology, mechanisms, and management [J]. Journal of Alzheimer's disease : JAD, 2014, 42(3): 739-55.
[19] KOSEL F, PELLEY J M S, FRANKLIN T B. Behavioural and psychological symptoms of dementia in mouse models of Alzheimer's disease-related pathology [J]. Neuroscience and biobehavioral reviews, 2020, 112: 634-47.
[20] ROSTAGNO A A. Pathogenesis of Alzheimer's Disease [J]. International journal of molecular sciences, 2022, 24(1).
[21] SE THOE E, FAUZI A, TANG Y Q, et al. A review on advances of treatment modalities for Alzheimer's disease [J]. Life sciences, 2021, 276: 119129.
[22] 2023 Alzheimer's disease facts and figures [J]. Alzheimer's & dementia : the journal of the Alzheimer's Association, 2023, 19(4): 1598-695.
[23] GOATE A, CHARTIER-HARLIN M C, MULLAN M, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease [J]. Nature, 1991, 349(6311): 704-6.
[24] HARDY J A, HIGGINS G A. Alzheimer's disease: the amyloid cascade hypothesis [J]. Science (New York, NY), 1992, 256(5054): 184-5.
[25] IQBAL K, ALONSO ADEL C, CHEN S, et al. Tau pathology in Alzheimer disease and other tauopathies [J]. Biochimica et biophysica acta, 2005, 1739(2-3): 198-210.
[26] HENEKA M T, CARSON M J, EL KHOURY J, et al. Neuroinflammation in Alzheimer's disease [J]. The Lancet Neurology, 2015, 14(4): 388-405.
[27] ONYANGO I G, LU J, RODOVA M, et al. Regulation of neuron mitochondrial biogenesis and relevance to brain health [J]. Biochimica et biophysica acta, 2010, 1802(1): 228-34.
[28] BARNES D E, YAFFE K. The projected effect of risk factor reduction on Alzheimer's disease prevalence [J]. The Lancet Neurology, 2011, 10(9): 819-28.
[29] MOSCONI L, PUPI A, DE LEON M J. Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer's disease [J]. Annals of the New York Academy of Sciences, 2008, 1147: 180-95.
[30] CUNNANE S C, TRUSHINA E, MORLAND C, et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing [J]. Nature reviews Drug discovery, 2020, 19(9): 609-33.
[31] PIETROFESA R A, VELALOPOULOU A, LEHMAN S L, et al. doi:10.3390/ijms17060953 [J]. International journal of molecular sciences, 2016, 17(6): 953.
[32] AANERUD J, BORGHAMMER P, RODELL A, et al. Sex differences of human cortical blood flow and energy metabolism [J]. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2017, 37(7): 2433-40.
[33] BROOKS G A. Lactate as a fulcrum of metabolism [J]. Redox biology, 2020, 35: 101454.
[34] RABINOWITZ J D, ENERBäCK S. Lactate: the ugly duckling of energy metabolism [J]. Nature metabolism, 2020, 2(7): 566-71.
[35] ZHANG D, TANG Z, HUANG H, et al. Metabolic regulation of gene expression by histone lactylation [J]. Nature, 2019, 574(7779): 575-80.
[36] ROLAND C L, ARUMUGAM T, DENG D, et al. Cell surface lactate receptor GPR81 is crucial for cancer cell survival [J]. Cancer research, 2014, 74(18): 5301-10.
[37] PELLERIN L, MAGISTRETTI P J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization [J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(22): 10625-9.
[38] YANG C, PAN R Y, GUAN F, et al. Lactate metabolism in neurodegenerative diseases [J]. Neural regeneration research, 2024, 19(1): 69-74.
[39] ZYŚK M, BERETTA C, NAIA L, et al. Amyloid-β accumulation in human astrocytes induces mitochondrial disruption and changed energy metabolism [J]. Journal of neuroinflammation, 2023, 20(1): 43.
[40] PAN R Y, HE L, ZHANG J, et al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer's disease [J]. Cell metabolism, 2022, 34(4): 634-48.e6.
[41] MINHAS P S, JONES J R, LATIF-HERNANDEZ A, et al. Restoring hippocampal glucose metabolism rescues cognition across Alzheimer's disease pathologies [J]. Science (New York, NY), 2024, 385(6711): eabm6131.
[42] WANG C, ZONG S, CUI X, et al. The effects of microglia-associated neuroinflammation on Alzheimer's disease [J]. Frontiers in immunology, 2023, 14: 1117172.
[43] LEE H W, XU Y, ZHU X, et al. Endothelium-derived lactate is required for pericyte function and blood-brain barrier maintenance [J]. The EMBO journal, 2022, 41(9): e109890.
[44] FAN M, YANG K, WANG X, et al. Lactate promotes endothelial-to-mesenchymal transition via Snail1 lactylation after myocardial infarction [J]. Science advances, 2023, 9(5): eadc9465.
[45] BROOKS G A. The Science and Translation of Lactate Shuttle Theory [J]. Cell metabolism, 2018, 27(4): 757-85.
[46] LAMA S, AUER R N, TYSON R, et al. Lactate storm marks cerebral metabolism following brain trauma [J]. The Journal of biological chemistry, 2014, 289(29): 20200-8.
[47] MAGISTRETTI P J, ALLAMAN I. Lactate in the brain: from metabolic end-product to signalling molecule [J]. Nature reviews Neuroscience, 2018, 19(4): 235-49.
[48] JASZCZYK A, JUSZCZAK G R. Glucocorticoids, metabolism and brain activity [J]. Neuroscience and biobehavioral reviews, 2021, 126: 113-45.
[49] SLUPE A M, KIRSCH J R. Effects of anesthesia on cerebral blood flow, metabolism, and neuroprotection [J]. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2018, 38(12): 2192-208.
[50] LAURETTI E, LI J G, DI MECO A, et al. Glucose deficit triggers tau pathology and synaptic dysfunction in a tauopathy mouse model [J]. Translational psychiatry, 2017, 7(1): e1020.
[51] WANG Q, DUAN L, LI X, et al. Glucose Metabolism, Neural Cell Senescence and Alzheimer's Disease [J]. International journal of molecular sciences, 2022, 23(8).
[52] LEPIARZ-RABA I, GBADAMOSI I, FLOREA R, et al. Metabolic regulation of microglial phagocytosis: Implications for Alzheimer's disease therapeutics [J]. Translational neurodegeneration, 2023, 12(1): 48.
[53] GAO X, PANG C, FAN Z, et al. Regulation of newly identified lysine lactylation in cancer [J]. Cancer letters, 2024, 587: 216680.
[54] BELL J D, BROWN J C, KUBAL G, et al. NMR-invisible lactate in blood plasma [J]. FEBS letters, 1988, 235(1-2): 81-6.
[55] LI X, ZHANG Y, XU L, et al. Ultrasensitive sensors reveal the spatiotemporal landscape of lactate metabolism in physiology and disease [J]. Cell metabolism, 2023, 35(1): 200-11.e9.
[56] WANG N, WANG W, WANG X, et al. Histone Lactylation Boosts Reparative Gene Activation Post-Myocardial Infarction [J]. Circulation research, 2022, 131(11): 893-908.