摘要
线粒体作为细胞的“能量工厂”和信号转导枢纽,其功能完整性对维持细胞稳态至关重要。近年的前沿研究表明,线粒体功能异常,包括氧化磷酸化缺陷、活性氧过度产生、线粒体动力学(融合/分裂)失衡、线粒体自噬障碍以及线粒体DNA突变等,远非仅导致经典的线粒体病,而是广泛参与并驱动了众多重大人类疾病的发生与发展。本综述系统总结了线粒体功能异常的核心分子机制,重点阐述了其在代谢性疾病(如糖尿病及其心肾并发症)、神经退行性疾病、自身免疫性疾病、肿瘤以及肌肉骨骼疾病等中的关键作用。研究揭示,线粒体通过释放损伤相关分子模式(如mtDNA)激活固有免疫(如cGAS-STING通路),通过内质网-线粒体紧密互作协调应激反应,并通过非编码RNA进行精细的表观遗传调控,从而深度介入疾病病理网络。在诊疗策略方面,新兴的线粒体靶向探针、线粒体功能活体检测、基于细胞外囊泡的线粒体转移技术以及针对线粒体自噬、动力学和特定蛋白(如Metadherin, TIPE1)的干预手段,为相关疾病的精准诊断和治疗提供了全新视角。传统中医药也在调控线粒体稳态方面展现出独特潜力。总之,线粒体已成为理解疾病共性病理生理机制和开发新型疗法的核心靶标,未来研究需进一步整合多组学与前沿技术,推动线粒体医学向临床转化。
关键词: 线粒体;线粒体功能障碍;代谢疾病;神经退行性疾病;线粒体自噬;细胞器间通讯
Abstract
Mitochondria, as the "energy factories" of cells and hubs for signal transduction, play a crucial role in maintaining cellular homeostasis. Cutting-edge research in recent years has shown that mitochondrial dysfunction, including defects in oxidative phosphorylation, excessive production of reactive oxygen species, imbalance in mitochondrial dynamics (fusion/fission), impaired mitochondrial autophagy, and mitochondrial DNA mutations, is far from merely causing classic mitochondrial diseases. Instead, it is widely involved in and drives the occurrence and development of numerous major human diseases. This review systematically summarizes the core molecular mechanisms of mitochondrial dysfunction, with a focus on its key role in various diseases, such as metabolic disorders (e.g., diabetes and its cardiorenal complications), neurodegenerative diseases, autoimmune diseases, tumors, and musculoskeletal diseases. Studies reveal that mitochondria deeply engage in disease pathological networks by releasing damage-associated molecular patterns (such as mtDNA) to activate innate immunity (such as the cGAS-STING pathway), coordinating stress responses through endoplasmic reticulum-mitochondria tight interaction, and performing fine epigenetic regulation through non-coding RNAs. In terms of diagnostic and therapeutic strategies, emerging mitochondrial-targeting probes, in vivo mitochondrial function detection, extracellular vesicle-based mitochondrial transfer techniques, and intervention methods targeting mitochondrial autophagy, dynamics, and specific proteins (such as Metadherin, TIPE1) provide new perspectives for the precise diagnosis and treatment of related diseases. Traditional Chinese medicine also shows unique potential in regulating mitochondrial homeostasis. In summary, mitochondria have become a core target for understanding common pathological physiological mechanisms of diseases and developing novel therapies. Future research needs to further integrate multi-omics and cutting-edge technologies to advance mitochondrial medicine towards clinical translation.
Key words: Mitochondria; Mitochondrial dysfunction; Metabolic diseases; Neurodegenerative diseases; Mitochondrial autophagy; Interorganelle communication
参考文献 References
[1] Kamps R ,Robinson L E . LNC-ing Genetics in Mitochondrial Disease.[J].Non-coding RNA,2024,10(6): 57-57.
[2] 黄越,杨丽娜. 线粒体自噬调控慢性肾脏病细胞焦亡与铁死亡[J].中南大学学报(医学版),2024,49(11):1769-1776.
[3] 张雨,李玉,郑钟原,等. 中药治疗糖尿病心血管疾病研究进展[J].中国实验方剂学杂志,2024,30(23):327-337.
[4] Liao Z ,Tong B ,Ke W , et al. Extracellular vesicles as carriers for mitochondria: Biological functions and clinical applications.[J].Mitochondrion,2024,78101935.
[5] 张娟.线粒体DNA调控系统性红斑狼疮cGAS乳酸化修饰诱导干扰素反应的机制研究[D].兰州大学,2024.
[6] 梁韵仪.Metadherin通过调控线粒体动力学与FoxO3a乳酸化修饰介导糖尿病肾病足细胞损伤[D].南方医科大学,2024.
[7] X. S Z ,J. J W ,R. C S , et al. The endoplasmic reticulum: Homeostasis and crosstalk in retinal health and disease[J]. Progress in Retinal and Eye Research, 2024,98101231-.
[8] Zeyu W ,Xiao Y ,Shuijun Z , et al. Novel roles of PIWI proteins and PIWI-interacting RNAs in human health and diseases[J].Cell Communication and Signaling,2023,21(1): 343-343.
[9] 洪恺祺,陈丽,周忠志,等. 线粒体自噬在糖尿病慢性并发症发病中作用的研究进展[J].中国医药,2023,18(11): 1742-1746.
[10] Jiawei C ,Hong Z ,Meiqing L , et al. A new perspective on the autophagic and non-autophagic functions of the GABARAP protein family: a potential therapeutic target for human diseases.[J].Molecular and cellular biochemistry, 2023, 479(6):1415-1441.
[11] 鲁延利.Asprosin扰乱线粒体动力学稳态从而导致血管内皮功能障碍[D].南昌大学,2023.
[12] 王子阳.PVT1调控TRIM56介导糖尿病肾病足细胞线粒体损伤和炎症反应的作用及机制研究[D].山东大学, 2023.
[13] 刘露露.MRPS31通过调节线粒体功能在肺纤维化中的作用及机制研究[D].河南师范大学,2023.
[14] Jiaqi Y ,Yifan M ,Lv Z , et al. Histidine trinucleotidebinding protein 2: from basic science to clinical implications.[J].Biochemical pharmacology,2023, 212115527 -115527.
[15] Yaozhi Z ,Yang W ,Minjie Z , et al. Synergistic mechanism between the endoplasmic reticulum and mitochondria and their crosstalk with other organelles.[J].Cell death discovery, 2023,9(1):51-51.
[16] Man W ,Fei Y ,Wenguang C , et al. Inflammasomes: a rising star on the horizon of COVID-19 pathophysiology.[J]. Frontiers in immunology,2023, 141185233-1185233.
[17] Zhaoyu M ,Heyou H ,Yanli Z . Mitochondrial dysfunction-targeted nanosystems for precise tumor therapeutics[J]. Biomaterials,2023,293121947-121947.
[18] 胡志雷.Optineurin通过激活线粒体自噬减轻氧化应激所致椎间盘退变的作用机制研究[D].中国人民解放军陆军军医大学,2022.
[19] 刘蕾.TIPE1通过抑制PHB2介导的线粒体自噬调控糖尿病肾病进展的作用及机制研究[D].山东大学,2022.
[20] ZiHao W ,Lu C ,Wei L , et al. Mitochondria transfer and transplantation in human health and diseases.[J]. Mitochondrion, 2022,6580-87.
[21] 鲁天绮.树突状细胞TFAM缺失导致线粒体功能障碍并增强抗肿瘤免疫的机制研究[D].四川大学,2022.
[22] 周园媛.线粒体DNA单倍型类群M9在糖尿病视网膜病变中的作用及机制研究[D].昆明医科大学,2021.
[23] 张丹妹.外周血单个核细胞的线粒体氧化呼吸功能与肌少症诊断参数的相关性研究[D].南京医科大学,2021.
[24] 杨倩倩.UCP2调控线粒体稳态在足细胞损伤中的作用及机制研究[D].南京医科大学,2021.
[25] 覃文聘,闫舰飞,焦凯. 线粒体结构及功能异常在骨关节炎软骨退变中的作用研究进展[J].医学研究杂志,2020, 49(05): 177-181.
[26] 张涛.线粒体在缺血性脑卒中作用的研究[D].青海大学,2020.
[27] 孙川.线粒体靶向的咔唑基双响应双光子荧光探针的研究[D].安徽大学,2020.
[28] 李冬冬.血红素氧合酶-1调节非酒精性脂肪性肝炎线粒体功能及氧化应激损伤的作用及机制研究[D].河北医科大学,2020.
[29] 陈泽涛,当归补血汤调控线粒体自噬促进再生障碍性贫血造血重建机制的研究.山东省,山东中医药大学附属医院,2020-01-10.
[30] 苏兆亮,基于免疫微环境与线粒体calpain调控基础上的心脏损伤机制解析与修复策略.江苏省,江苏大学附属四院,2019-12-01.