参考文献 References
[1] Folkman J. Tumor angiogenesis: therapeutic implications[J]. N Engl j Med, 1971, 285(21): 1182-1186.
[2] Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer[J]. New England journal of medicine, 2004, 350(23): 2335-2342.
[3] Kenswil K J G, Pisterzi P, Sánchez-Duffhues G, et al. Endothelium-derived stromal cells contribute to hematopoietic bone marrow niche formation[J]. Cell Stem Cell, 2021, 28(4): 653-670. e11..
[4] Folkman J. Angiogenesis: an organizing principle for drug discovery?[J]. Nature reviews Drug discovery, 2007, 6(4): 273-286.
[5] Li Y, Liu Z, Han X, et al. Dynamics of Endothelial Cell Generation and Turnover in Arteries During Homeostasis and Diseases[J]. Circulation, 2024, 149(2): 135-154.
[6] Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities[J]. Cellular and Molecular Life Sciences, 2020, 77: 1745-1770.
[7] Ribatti D, Crivellato E. “Sprouting angiogenesis”, a reappraisal[J]. Developmental biology, 2012, 372(2): 157-165.
[8] Betz C, Lenard A, Belting H G, et al. Cell behaviors and dynamics during angiogenesis[J]. Development, 2016, 143(13): 2249-2260.
[9] Jakobsson L, Bentley K, Gerhardt H. VEGFRs and Notch: a dynamic collaboration in vascular patterning[J]. Biochemical Society Transactions, 2009, 37(6): 1233-1236.
[10] Apte R S, Chen D S, Ferrara N. VEGF in signaling and disease: beyond discovery and development[J]. Cell, 2019, 176(6): 1248-1264.
[11] Tammela T, Zarkada G, Wallgard E, et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation[J]. Nature, 2008, 454(7204): 656-660.
[12] Lenard A, Ellertsdottir E, Herwig L, et al. In vivo analysis reveals a highly stereotypic morphogenetic pathway of vascular anastomosis[J]. Developmental cell, 2013, 25(5): 492-506.
[13] Surawska H, Ma P C, Salgia R. The role of ephrins and Eph receptors in cancer[J]. Cytokine & growth factor reviews, 2004, 15(6): 419-433.
[14] Wysocka M B, Pietraszek-Gremplewicz K, Nowak D. The role of apelin in cardiovascular diseases, obesity and cancer[J]. Frontiers in physiology, 2018, 9: 557.
[15] Heidemann J, Ogawa H, Dwinell M B, et al. Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2[J]. Journal of Biological Chemistry, 2003, 278(10): 8508-8515.
[16] Caduff J H, Fischer L C, Burri P H. Scanning electron microscope study of the developing microvasculature in the postnatal rat lung[J]. The Anatomical Record, 1986, 216(2): 154-164.
[17] Iaccarino G, Ciccarelli M, Sorriento D, et al. Ischemic neoangiogenesis enhanced by β2-adrenergic receptor overexpression: a novel role for the endothelial adrenergic system[J]. Circulation research, 2005, 97(11): 1182-1189.
[18] Lee G S, Filipovic N, Miele L F, et al. Blood flow shapes intravascular pillar geometry in the chick chorioallantoic membrane[J]. Journal of angiogenesis research, 2010, 2: 1-9.
[19] Crivellato E, Nico B, Vacca A, et al. Recombinant human erythropoietin induces intussusceptive microvascular growth in vivo[J]. Leukemia, 2004, 18(2): 331-336..
[20] Hlushchuk R, Styp-Rekowska B, Dzambazi J, et al. Endoglin inhibition leads to intussusceptive angiogenesis via activation of factors related to COUP-TFII signaling pathway[J]. PLoS One, 2017, 12(8): e0182813.
[21] Castro P R, Barbosa A S, Pereira J M, et al. Cellular and molecular heterogeneity associated with vessel formation processes[J]. BioMed research international, 2018, 2018(1): 6740408.
[22] Vimalraj S, Pichu S, Pankajam T, et al. Nitric oxide regulates intussusceptive-like angiogenesis in wound repair in chicken embryo and transgenic zebrafish models[J]. Nitric Oxide, 2019, 82: 48-58.
[23] Hlushchuk R, Riesterer O, Baum O, et al. Tumor recovery by angiogenic switch from sprouting to intussusceptive angiogenesis after treatment with PTK787/ZK222584 or ionizing radiation[J]. The American journal of pathology, 2008, 173(4): 1173-1185.
[24] Donnem T, Reynolds A R, Kuczynski E A, et al. Non-angiogenic tumours and their influence on cancer biology[J]. Nature Reviews Cancer, 2018, 18(5): 323-336.
[25] Montana V, Sontheimer H. Bradykinin promotes the chemotactic invasion of primary brain tumors[J]. Journal of Neuroscience, 2011, 31(13): 4858-4867.
[26] Wang W, Zhou Y, Wei R, et al. Bradykinin promotes proliferation, migration, and invasion of cervical cancer cells through STAT3 signaling pathways[J]. Oncology reports, 2019, 42(6): 2521-2527.
[27] Pezzella F, Di Bacco A, Andreola S, et al. Angiogenesis in primary lung cancer and lung secondaries[J]. European Journal of Cancer, 1996, 32(14): 2494-2500.
[28] Seftor R E B, Hess A R, Seftor E A, et al. Tumor cell vasculogenic mimicry: from controversy to therapeutic promise[J]. The American journal of pathology, 2012, 181(4): 1115-1125.
[29] Ruf W, Seftor E A, Petrovan R J, et al. Differential role of tissue factor pathway inhibitors 1 and 2 in melanoma vasculogenic mimicry[J]. Cancer research, 2003, 63(17): 5381-5389.
[30] Hendrix M J C, Seftor R E B, Seftor E A, et al. Transendothelial function of human metastatic melanoma cells: role of the microenvironment in cell-fate determination[J]. Cancer research, 2002, 62(3): 665-668.
[31] Vartanian A, Stepanova E, Grigorieva I, et al. VEGFR1 and PKCα signaling control melanoma vasculogenic mimicry in a VEGFR2 kinase-independent manner[J]. Melanoma research, 2011, 21(2): 91-98.
[32] Kirschmann D A, Seftor E A, Hardy K M, et al. Molecular pathways: vasculogenic mimicry in tumor cells: diagnostic and therapeutic implications[J]. Clinical cancer research, 2012, 18(10): 2726-2732.
[33] Sandler A, Gray R, Perry M C, et al. Paclitaxel–carboplatin alone or with bevacizumab for non–small-cell lung cancer[J]. New England Journal of Medicine, 2006, 355(24): 2542-2550.
[34] Fuchs C S, Tomasek J, Yong C J, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial[J]. The Lancet, 2014, 383(9911): 31-39.
[35] Bonner J A, Harari P M, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck[J]. New England Journal of Medicine, 2006, 354(6): 567-578.
[36] Yang Y, Zhang Y, Iwamoto H, et al. Discontinuation of anti-VEGF cancer therapy promotes metastasis through a liver revascularization mechanism[J]. Nature communications, 2016, 7(1): 12680.
[37] Siemann D W. The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents[J]. Cancer treatment reviews, 2011, 37(1): 63-74.
[38] Grisham R, Ky B, Tewari K S, et al. Clinical trial experience with CA4P anticancer therapy: focus on efficacy, cardiovascular adverse events, and hypertension management[J]. Gynecologic oncology research and practice, 2018, 5: 1-10.Dark G G, Hill S A, Prise V E, et al. Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature[J]. Cancer research, 1997, 57(10): 1829-1834.
[39] Abotaleb M, Samuel S M, Varghese E, et al. Flavonoids in cancer and apoptosis[J]. Cancers, 2018, 11(1): 28.
[40] Daei Farshchi Adli A, Jahanban‐Esfahlan R, Seidi K, et al. An overview on Vadimezan (DMXAA): The vascular disrupting agent[J]. Chemical biology & drug design, 2018, 91(5): 996-1006.
[41] Jahanban-Esfahlan R, Seidi K, Monhemi H, et al. RGD delivery of truncated coagulase to tumor vasculature affords local thrombotic activity to induce infarction of tumors in mice[J]. Scientific reports, 2017, 7(1): 8126.
[42] Gill J H, Rockley K L, De Santis C, et al. Vascular Disrupting Agents in cancer treatment: Cardiovascular toxicity and implications for co-administration with other cancer chemotherapeutics[J]. Pharmacology & therapeutics, 2019, 202: 18-31.
[43] Shaked Y, Ciarrocchi A, Franco M, et al. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors[J]. Science, 2006, 313(5794): 1785-1787.
[44] Jain R K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy[J]. Science, 2005, 307(5706): 58-62.
[45] Xu Z, Guo C, Ye Q, et al. Endothelial deletion of SHP2 suppresses tumor angiogenesis and promotes vascular normalization[J]. Nature communications, 2021, 12(1): 6310.
[46] Zhang N, Yin R, Zhou P, et al. DLL1 orchestrates CD8+ T cells to induce long-term vascular normalization and tumor regression[J]. Proceedings of the National Academy of Sciences, 2021, 118(22): e2020057118.
[47] Sun Y, Chen W, Torphy R J, et al. Blockade of the CD93 pathway normalizes tumor vasculature to facilitate drug delivery and immunotherapy[J]. Science translational medicine, 2021, 13(604): eabc8922.
[48] Winkler F, Kozin S V, Tong R T, et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases[J]. Cancer cell, 2004, 6(6): 553-563.
[49] Price T J, Peeters M, Kim T W, et al. Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type KRAS exon 2 metastatic colorectal cancer (ASPECCT): a randomised, multicentre, open-label, non-inferiority phase 3 study[J]. The Lancet Oncology, 2014, 15(6): 569-579.
[50] Kim E S, Hirsh V, Mok T, et al. Gefitinib versus docetaxel in previously treated non-small-cell lung cancer (INTEREST): a randomised phase III trial[J]. The Lancet, 2008, 372(9652): 1809-1818.
[51] Lee S M, Khan I, Upadhyay S, et al. First-line erlotinib in patients with advanced non-small-cell lung cancer unsuitable for chemotherapy (TOPICAL): a double-blind, placebo-controlled, phase 3 trial[J]. The lancet oncology, 2012, 13(11): 1161-1170.
[52] Stamatiades E G, Tremblay M E, Bohm M, et al. Immune monitoring of trans-endothelial transport by kidney-resident macrophages[J]. Cell, 2016, 166(4): 991-1003.