期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Journal of Modern Biotechnology Research. 2025; 3: (1) ; 14-20 ; DOI: 10.12208/j.jmbr.20250002.

Current research on tumor angiogenesis and vascular-targeted therapy
肿瘤血管生成与靶向治疗的研究现状

作者: 何先忠, 葛庆, 王强 *

安徽医科大学第一附属医院肝胆外科;教育部肿瘤免疫医药基础研究创新中心;安徽省医药基础研究创新中心;肿瘤免疫微环境研究及治疗安徽省重点实验室 安徽合肥

*通讯作者: 王强,单位:安徽医科大学第一附属医院肝胆外科;教育部肿瘤免疫医药基础研究创新中心;安徽省医药基础研究创新中心;肿瘤免疫微环境研究及治疗安徽省重点实验室 安徽合肥;

发布时间: 2025-06-15 总浏览量: 76

摘要

肿瘤血管生成是肿瘤发生和进展的关键环节,在不同类型的肿瘤及其生长、浸润、侵袭以及转移的过程中均发挥着关键作用。该过程涉及多种分泌因子以及复杂的信号通路,并受到非血管内皮细胞的调节。新生的肿瘤血管通常具有扭曲、扩张的形态,与正常血管相比,其灌注减少,管壁渗漏,渗透性增加。这些结构特点不仅限制了化疗或者免疫治疗的有效性,还促进了癌细胞的转移与浸润。自Judah Folkman首次提出靶向肿瘤血管生成可以抑制肿瘤生长的理论以来,研究者们已开发出多种靶向血管治疗策略,包括抗血管生成治疗和血管正常化治疗。然而,尽管在这些领域取得了显著进展,靶向肿瘤血管治疗仍面临诸多挑战,许多药物未能达到预期的临床效果。本综述旨在总结肿瘤血管生成的机制及其相应的靶向治疗策略,探讨未来靶向肿瘤血管治疗的发展方向。通过对肿瘤血管生成过程及其特征的系统理解,期望为更有效的治疗手段的开发提供新思路。

关键词: 肿瘤血管生成;肿瘤血管共选;抗血管生成治疗;血管正常化

Abstract

Tumor angiogenesis is a critical factor in the onsetand progression of tumors, displaying distinct characteristics across various tumor types and developmental stages. This process involves numerous secreted factors and signaling pathways, and is influenced by non-endothelial cells. Tumor blood vessels typically exhibit curvature and dilation, along with variations in perfusion and permeability compared to normal blood vessels. These structural features not only impede the effective delivery of chemotherapy or immunotherapy agents but also facilitate the metastasis of cancer cells. Since Judah Folkman first proposed the concept that targeting tumor angiogenesis can inhibit tumor growth, various strategies for targeted vascular therapy have been developed, including anti-angiogenic therapies and vascular normalization techniques. However, despite significant advancements, targeted tumor vascular therapies continue to encounter numerous challenges regarding implementation and efficacy, with many drugs failing to achieve the anticipated clinical outcomes. This review aims to summarize the mechanisms underlying tumor angiogenesis and its associated targeted therapy strategies, while exploring future directions for the development of targeted tumor angiogenesis therapies. By gaining a deeper understanding of the processes and characteristics of tumor angiogenesis, this work aspires to provide new insights for the development of more effective treatment modalities.

Key words: Tumor angiogenesis; Tumor vessel co-option; Anti-angiogenic therapy; Vessel normalization

参考文献 References

[1] Folkman J. Tumor angiogenesis: therapeutic implications[J]. N Engl j Med, 1971, 285(21): 1182-1186.

[2] Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer[J]. New England journal of medicine, 2004, 350(23): 2335-2342.

[3] Kenswil K J G, Pisterzi P, Sánchez-Duffhues G, et al. Endothelium-derived stromal cells contribute to hematopoietic bone marrow niche formation[J]. Cell Stem Cell, 2021, 28(4): 653-670. e11..

[4] Folkman J. Angiogenesis: an organizing principle for drug discovery?[J]. Nature reviews Drug discovery, 2007, 6(4): 273-286.

[5] Li Y, Liu Z, Han X, et al. Dynamics of Endothelial Cell Generation and Turnover in Arteries During Homeostasis and Diseases[J]. Circulation, 2024, 149(2): 135-154.

[6] Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities[J]. Cellular and Molecular Life Sciences, 2020, 77: 1745-1770.

[7] Ribatti D, Crivellato E. “Sprouting angiogenesis”, a reappraisal[J]. Developmental biology, 2012, 372(2): 157-165.

[8] Betz C, Lenard A, Belting H G, et al. Cell behaviors and dynamics during angiogenesis[J]. Development, 2016, 143(13): 2249-2260.

[9] Jakobsson L, Bentley K, Gerhardt H. VEGFRs and Notch: a dynamic collaboration in vascular patterning[J]. Biochemical Society Transactions, 2009, 37(6): 1233-1236.

[10] Apte R S, Chen D S, Ferrara N. VEGF in signaling and disease: beyond discovery and development[J]. Cell, 2019, 176(6): 1248-1264.

[11] Tammela T, Zarkada G, Wallgard E, et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation[J]. Nature, 2008, 454(7204): 656-660.

[12] Lenard A, Ellertsdottir E, Herwig L, et al. In vivo analysis reveals a highly stereotypic morphogenetic pathway of vascular anastomosis[J]. Developmental cell, 2013, 25(5): 492-506.

[13] Surawska H, Ma P C, Salgia R. The role of ephrins and Eph receptors in cancer[J]. Cytokine & growth factor reviews, 2004, 15(6): 419-433.

[14] Wysocka M B, Pietraszek-Gremplewicz K, Nowak D. The role of apelin in cardiovascular diseases, obesity and cancer[J]. Frontiers in physiology, 2018, 9: 557.

[15] Heidemann J, Ogawa H, Dwinell M B, et al. Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2[J]. Journal of Biological Chemistry, 2003, 278(10): 8508-8515.

[16] Caduff J H, Fischer L C, Burri P H. Scanning electron microscope study of the developing microvasculature in the postnatal rat lung[J]. The Anatomical Record, 1986, 216(2): 154-164.

[17] Iaccarino G, Ciccarelli M, Sorriento D, et al. Ischemic neoangiogenesis enhanced by β2-adrenergic receptor overexpression: a novel role for the endothelial adrenergic system[J]. Circulation research, 2005, 97(11): 1182-1189.

[18] Lee G S, Filipovic N, Miele L F, et al. Blood flow shapes intravascular pillar geometry in the chick chorioallantoic membrane[J]. Journal of angiogenesis research, 2010, 2: 1-9.

[19] Crivellato E, Nico B, Vacca A, et al. Recombinant human erythropoietin induces intussusceptive microvascular growth in vivo[J]. Leukemia, 2004, 18(2): 331-336..

[20] Hlushchuk R, Styp-Rekowska B, Dzambazi J, et al. Endoglin inhibition leads to intussusceptive angiogenesis via activation of factors related to COUP-TFII signaling pathway[J]. PLoS One, 2017, 12(8): e0182813.

[21] Castro P R, Barbosa A S, Pereira J M, et al. Cellular and molecular heterogeneity associated with vessel formation processes[J]. BioMed research international, 2018, 2018(1): 6740408.

[22] Vimalraj S, Pichu S, Pankajam T, et al. Nitric oxide regulates intussusceptive-like angiogenesis in wound repair in chicken embryo and transgenic zebrafish models[J]. Nitric Oxide, 2019, 82: 48-58.

[23] Hlushchuk R, Riesterer O, Baum O, et al. Tumor recovery by angiogenic switch from sprouting to intussusceptive angiogenesis after treatment with PTK787/ZK222584 or ionizing radiation[J]. The American journal of pathology, 2008, 173(4): 1173-1185.

[24] Donnem T, Reynolds A R, Kuczynski E A, et al. Non-angiogenic tumours and their influence on cancer biology[J]. Nature Reviews Cancer, 2018, 18(5): 323-336.

[25] Montana V, Sontheimer H. Bradykinin promotes the chemotactic invasion of primary brain tumors[J]. Journal of Neuroscience, 2011, 31(13): 4858-4867.

[26] Wang W, Zhou Y, Wei R, et al. Bradykinin promotes proliferation, migration, and invasion of cervical cancer cells through STAT3 signaling pathways[J]. Oncology reports, 2019, 42(6): 2521-2527.

[27] Pezzella F, Di Bacco A, Andreola S, et al. Angiogenesis in primary lung cancer and lung secondaries[J]. European Journal of Cancer, 1996, 32(14): 2494-2500.

[28] Seftor R E B, Hess A R, Seftor E A, et al. Tumor cell vasculogenic mimicry: from controversy to therapeutic promise[J]. The American journal of pathology, 2012, 181(4): 1115-1125.

[29] Ruf W, Seftor E A, Petrovan R J, et al. Differential role of tissue factor pathway inhibitors 1 and 2 in melanoma vasculogenic mimicry[J]. Cancer research, 2003, 63(17): 5381-5389.

[30] Hendrix M J C, Seftor R E B, Seftor E A, et al. Transendothelial function of human metastatic melanoma cells: role of the microenvironment in cell-fate determination[J]. Cancer research, 2002, 62(3): 665-668.

[31] Vartanian A, Stepanova E, Grigorieva I, et al. VEGFR1 and PKCα signaling control melanoma vasculogenic mimicry in a VEGFR2 kinase-independent manner[J]. Melanoma research, 2011, 21(2): 91-98.

[32] Kirschmann D A, Seftor E A, Hardy K M, et al. Molecular pathways: vasculogenic mimicry in tumor cells: diagnostic and therapeutic implications[J]. Clinical cancer research, 2012, 18(10): 2726-2732.

[33] Sandler A, Gray R, Perry M C, et al. Paclitaxel–carboplatin alone or with bevacizumab for non–small-cell lung cancer[J]. New England Journal of Medicine, 2006, 355(24): 2542-2550.

[34] Fuchs C S, Tomasek J, Yong C J, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial[J]. The Lancet, 2014, 383(9911): 31-39.

[35] Bonner J A, Harari P M, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck[J]. New England Journal of Medicine, 2006, 354(6): 567-578.

[36] Yang Y, Zhang Y, Iwamoto H, et al. Discontinuation of anti-VEGF cancer therapy promotes metastasis through a liver revascularization mechanism[J]. Nature communications, 2016, 7(1): 12680.

[37] Siemann D W. The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents[J]. Cancer treatment reviews, 2011, 37(1): 63-74.

[38] Grisham R, Ky B, Tewari K S, et al. Clinical trial experience with CA4P anticancer therapy: focus on efficacy, cardiovascular adverse events, and hypertension management[J]. Gynecologic oncology research and practice, 2018, 5: 1-10.Dark G G, Hill S A, Prise V E, et al. Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature[J]. Cancer research, 1997, 57(10): 1829-1834.

[39] Abotaleb M, Samuel S M, Varghese E, et al. Flavonoids in cancer and apoptosis[J]. Cancers, 2018, 11(1): 28.

[40] Daei Farshchi Adli A, Jahanban‐Esfahlan R, Seidi K, et al. An overview on Vadimezan (DMXAA): The vascular disrupting agent[J]. Chemical biology & drug design, 2018, 91(5): 996-1006.

[41] Jahanban-Esfahlan R, Seidi K, Monhemi H, et al. RGD delivery of truncated coagulase to tumor vasculature affords local thrombotic activity to induce infarction of tumors in mice[J]. Scientific reports, 2017, 7(1): 8126.

[42] Gill J H, Rockley K L, De Santis C, et al. Vascular Disrupting Agents in cancer treatment: Cardiovascular toxicity and implications for co-administration with other cancer chemotherapeutics[J]. Pharmacology & therapeutics, 2019, 202: 18-31.

[43] Shaked Y, Ciarrocchi A, Franco M, et al. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors[J]. Science, 2006, 313(5794): 1785-1787.

[44] Jain R K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy[J]. Science, 2005, 307(5706): 58-62.

[45] Xu Z, Guo C, Ye Q, et al. Endothelial deletion of SHP2 suppresses tumor angiogenesis and promotes vascular normalization[J]. Nature communications, 2021, 12(1): 6310.

[46] Zhang N, Yin R, Zhou P, et al. DLL1 orchestrates CD8+ T cells to induce long-term vascular normalization and tumor regression[J]. Proceedings of the National Academy of Sciences, 2021, 118(22): e2020057118.

[47] Sun Y, Chen W, Torphy R J, et al. Blockade of the CD93 pathway normalizes tumor vasculature to facilitate drug delivery and immunotherapy[J]. Science translational medicine, 2021, 13(604): eabc8922.

[48] Winkler F, Kozin S V, Tong R T, et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases[J]. Cancer cell, 2004, 6(6): 553-563.

[49] Price T J, Peeters M, Kim T W, et al. Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type KRAS exon 2 metastatic colorectal cancer (ASPECCT): a randomised, multicentre, open-label, non-inferiority phase 3 study[J]. The Lancet Oncology, 2014, 15(6): 569-579.

[50] Kim E S, Hirsh V, Mok T, et al. Gefitinib versus docetaxel in previously treated non-small-cell lung cancer (INTEREST): a randomised phase III trial[J]. The Lancet, 2008, 372(9652): 1809-1818.

[51] Lee S M, Khan I, Upadhyay S, et al. First-line erlotinib in patients with advanced non-small-cell lung cancer unsuitable for chemotherapy (TOPICAL): a double-blind, placebo-controlled, phase 3 trial[J]. The lancet oncology, 2012, 13(11): 1161-1170.

[52] Stamatiades E G, Tremblay M E, Bohm M, et al. Immune monitoring of trans-endothelial transport by kidney-resident macrophages[J]. Cell, 2016, 166(4): 991-1003.

引用本文

何先忠, 葛庆, 王强, 肿瘤血管生成与靶向治疗的研究现状[J]. 现代生物技术研究, 2025; 3: (1) : 14-20.